
www.manaraa.com

University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Masters Theses 1911 - February 2014

January 2008

A Synergistic Approach to Modeling Crack
Propagation in Nanoreinforced Polymer
Composites
Andy Mccarron
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/theses

This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 -
February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

Mccarron, Andy, "A Synergistic Approach to Modeling Crack Propagation in Nanoreinforced Polymer Composites" (2008). Masters
Theses 1911 - February 2014. 107.
Retrieved from https://scholarworks.umass.edu/theses/107

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Ftheses%2F107&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/theses?utm_source=scholarworks.umass.edu%2Ftheses%2F107&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/theses?utm_source=scholarworks.umass.edu%2Ftheses%2F107&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/theses/107?utm_source=scholarworks.umass.edu%2Ftheses%2F107&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu


www.manaraa.com

 

 

A SYNERGISTIC APPROACH TO MODELING CRACK PROPAGATION IN 

NANOREINFORCED POLYMER COMPOSITES 

 

 

 

 

 

 

 

 

 

A Thesis Presented 

 

by 

 

ANDREW P. MCCARRON 

 

 

 

 

 

 

 

 

 

 

 

 

 

Submitted to the Graduate School of the 

University of Massachusetts Amherst in partial fulfillment 

of the requirements for the degree of 

 

MASTER OF SCIENCE IN MECHANICAL ENGINEERING 

 

May 2008 

 

Mechanical and Industrial Engineering 



www.manaraa.com

 ii 

 

 

A SYNERGISTIC APPROACH TO MODELING CRACK PROPAGATION IN 

NANOREINFORCED POLYMER COMPOSITES 

 

 

 

 

 

A Thesis Presented 

 

by 

 

ANDREW P. MCCARRON 

 

 

 

 

 

 

 

 

 

 

 

 

Approved as to style and content by: 

 

 

____________________________ 

Robert W. Hyers, Chair 

 

 

____________________________ 
Moon K. Kim, Member 

 

 

____________________________ 
Karl Jakus, Member 

 

 

                                                               ____________________________________ 
Mario Rotea, Department Head 

Mechanical & Industrial Engineering 



www.manaraa.com

 iii 

ACKNOWLEDGEMENTS 

 

 I would like to thank Professor Robert Hyers for his constant support, patience, 

and guidance throughout my academic career at the University of Massachusetts 

Amherst. Professor Hyers is a remarkable personal and it has been a privilege to both 

work and study under him. I would also like to thank the members of my thesis 

committee Professor Moon Kim and Professor Karl Jakus for their assistance and insight 

along the way. Lastly, I would like to thank my family and friends. I can’t thank you 

enough for all you’ve done for me. 

 



www.manaraa.com

 iv 

ABSTRACT 

 

 

A SYNERGISTIC APPROACH TO MODELING CRACK PROPAGATION IN 

NANOREINFORCED POLYMER COMPOSITES 

 

MAY 2008 

 

ANDREW P. MCCARRON, B.S., UNIVERSITY OF MASSACHUSETTS 

AMHERST 

 

M.S.M.E., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor Robert W. Hyers 

 

 

 Empirical studies indicate that a polymer reinforced with micro- and nano-scale 

particles could enhance both the stiffness and toughness of the composite. In addition to 

these augmented attributes, the composite would be light weight with a high resistance to 

corrosion making such a material extremely versatile and desirable for a host of 

applications.  

 Validated computational models that can accurately simulate the effects of micro- 

and nanoparticle reinforcement on the fracture characteristics of polymer composites are 

necessary to give insight into how and why this method of reinforcement is effective. 

Furthermore, a model that can account for non-continuum effects will hasten the 

development of both new hierarchical composite materials and new theories to explain 

their behavior[1]. This paper proposes a hierarchal method for modeling fracture in 

multiscale polymer composites by utilizing an Elastic Network Model (ENM) in 

conjunction with a Finite Element Analysis (FEA). The novelty of this approach lies in 

its ability to model a large part with FEA while still accounting for the interactions 

between the reinforcement particles and the polymer matrix at a scale below the limit of 
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continuum mechanics with the ENM. The intent of the research proposed in this paper is 

to determine the feasibility of the hierarchical modeling system. 
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CHAPTER 1  

BACKGROUND OF FRACTURE MECHANICS 

1.1 Relevance  

 Crack initiation and growth are the primary causes for mechanical failure in 

stressed members. Cracks weaken a part by reducing the overall load bearing area and 

causing an increased localized stress in the material around the tip of the crack. 

Unexpected failure of a part during its lifetime can be costly for a number of reasons both 

financial and in terms of human life.  

 The goal of fracture mechanics is to determine what conditions will create and 

drive a crack. By understanding the phenomena of fracture engineers can competently 

design against this particular mode of failure.  

1.2 Observations of Fracture 

Consider an infinite thin plate under tension with a crack extending into one side, 

Figure 1.1. This singular crack has an enormous effect on the stress gradients throughout 

the part.  To start with, the section of material along line A in Figure 1.1 is under a larger 

stress than the remainder of the block due to the decreased surface area over which the 

load is distributed. More importantly, the tip of the crack acts as a stress intensifier and 

the resulting stresses in the vicinity of the crack tip are exceedingly high. The high stress 

around the crack tip cause the material to plastically deformed.  

The field of fracture mechanics divides materials into two broad categories, brittle 

and ductile, based on the materials’ fracture characteristics. Brittle materials fracture with 

only a small amount of plastic deformation occurring. The amount of plastic deformation 
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is so minimal it can be considered negligible in the analysis without significantly 

influencing the accuracy of the results. In ductile materials a large amount of plastic 

deformation occurs, the effects of which can not be ignored in the failure analysis. 

Analysis of fracture in ductile materials is much more complex than in brittle materials 

due to the difficulties of accounting for the plastic deformation.   

The fundamental equations of fracture mechanics are derived from energy 

considerations. The different approaches used to derive them will be outlined in 

subsequent sections. The fundamental equations of fracture are based on an energy 

balance between the work done by external loads and the release of strain energy 

compared to the increase in free surface energy resulting from the creation of new surface 

area and the accompanied localized plastic deformation at the crack tip (both of which are 

irreversible processes) [2].  

 

 

                                    (a)                                                             (b) 

Figure 1.1: The surface (a) and contour (b) plot of the stress fields around a crack 

tip for a linear elastic material under plane stress uni-axial loading conditions. 
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1.3 History    

A.A. Griffith is generally credited as the father of classical fracture mechanics due  

to his pioneering work during the World War I 

era. Prior to World War I theoretical calculations 

showed that the stress in the material surrounding 

the crack tip approached infinity as the distance 

from the tip decreased and resulted in a 

singularity at the tip of the crack, as shown by 

line A in Figure 1.2 . An infinite stress at the 

crack tip is unreasonable. If it were true, even the 

smallest crack would result in immediate 

catastrophic failure of the part because no 

material can withstand an infinite stress. To explain the inconsistency between the 

theoretical calculation and observed behavior of parts containing cracks A.A. Griffith 

proposed a thermodynamic approach to derive the fracture equations. Griffith’s approach 

assumed that the energy necessary to create new crack surface came from the release of 

strain energy resulting from the relaxation of local stress around the crack tip as the crack 

advanced.  Under this assumption, when the strain energy release rate becomes greater 

than the energy consumed by creating additional surface area the crack would become 

unstable and propagate across the part. The onset of unstable growth is equivalent to 

immediate catastrophic failure of the part. Griffth’s theory approximates the strain energy 

release as: 

  G a
E

= π
σ 2

 (1a) 

 

Figure 1.2: Approximate stress 

distribution around a crack tip 

[3].  
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  G a
E

c

f= π
σ 2

  (1b) 

where G is the strain energy release rate, E is the elastic modulus, σ is the applied stress, 

and a is the crack length. The subscript c denotes critical and f denotes failure. When G ≥ 

Gc unstable crack growth commences.  

Despite his ingenuity, Griffith’s theory was generally ignored for the next two 

decades until World War II when Irwin and his colleagues revisited Griffith’s explanation 

and proposed a modification. Irwin’s modification replaced the term strain energy release 

rate (G) with stress intensity (K), and surface energy (Gc) with fracture toughness (Kc). 

The relationship between the separate properties is as follows: 

K EGc c=  (plane stress) (2a) 

K
EG

c
c=

−1 2ν
 (plane strain) (2b) 

where ν is Poisson’s ratio [4]. The amount of strain energy available is dependent on the 

geometry and loading conditions of the sample. 

Facture toughness is considered a material property and is defined as a materials 

ability to resist fracture. At the onset of failure the stress intensity (K) at the crack tip is 

equal to the fracture toughness (Kc) [3]. Brittle materials, such as ceramics, are 

characterized by low fracture toughness. Ductile materials, which include most metals, 

tend to be characterized by high fracture toughness [5]. Fracture toughness will  

be discussed in further detail in a subsequent section.  

While Irwin’s modification improved Griffith’s theory the field of fracture 

mechanics was still incomplete and was limited to scenarios where the material response 

could be idealized as linear elastic. Please note that up until this point the entire 
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discussion of has been limited to the linear elastic cases and is referred to as the field of 

Linear Elastic Fracture Mechanics (LEFM). 

 Incorporating the effects of plasticity into the 

field of fracture mechanics took another two decades 

when in mid 1960’s J.R. Rice introduced the J-Integral. 

Physically, the J-integral is the area under a load vs. 

displacement diagram for a given material as shown in 

Figure 1.3 (see also §1.5). Determining the area under 

the load-displacement curve is equivalent to the work 

(energy) per unit fracture surface area of a material
1
.  

The J-Integral reduces to the same equations described 

by LEFM under the idealized LEFM assumptions. With the introduction of the J-Integral 

the field of Elastic-Plastic Fracture Mechanics (EPFM) was born. Further information on 

the J-integral will be presented in a subsequent section. 

The J-integral is applicable so long as the plastic deformation at the tip of the 

crack doesn’t extend completely across the part. In the case when the plastic region 

extends completely across the specimen the crack tip no longer acts as a stress intensifier. 

When this occurs the sample is said to have succumbed to collapse. Collapse is most 

likely to occur in samples of materials that are thin, have a high fracture toughness, or a 

small crack size [3]. The stress determined for the condition of collapse is the maximum 

stress that can be carried by the sample, regardless of any other fracture criteria. 

However, it is important to remember that even when not acting as a stress intensifier, a 

                                                 
1
 The integral of the Load vs. Displacement curve determines the work that went into both elastically and 

plastically deforming the part. The elastic energy would be released during fracture and in most cases is 

extremely small compared to the overall energy necessary to propagate a crack.  

 

Figure 1.3: The grey region 

represents the value of the 

J-Integral [3]. 
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crack is still reducing the load-bearing area of the sample, thus resulting in a higher stress 

for that region than in rest of the sample [6].  

While the inclusion of the plasticity in a failure analysis is more complete and 

leads to more accurate results, it also greatly increases the complexity of the problem. 

The resulting increased accuracy of EPFM doesn’t always justify the increased 

computational demands. Many ‘real life’ scenarios can be idealized as linear-elastic 

without sacrificing a great deal of accuracy. Moreover, the results of the LEFM analysis 

err on the conservative side by underestimating the strength and durability of a part, 

resulting in a larger safety factor.    

  Damage Mechanics provides an alternative approach for deriving the constitutive 

equations for fracture. Similar to Griffith’s theory, the criteria for fracture in Damage 

Mechanics is derived from a thermodynamic approach [7]. Damage Mechanic differs 

from Griffth’s Theory by including both time and temperature terms in the derivation of 

its constitutive equations. Polymers are heavily influenced by both time an temperature 

making Damage Mechanics a natural selection for analysis of these materials [8, 9]. The 

simulations conducted in this paper are not aimed at studying the effects of time and 

temperature so both properties will be held constant. The criteria for fracture predict by 

Damage Mechanics are in agreement with the criteria predicted by Griffith, Irwin, and 

Rice when under the same assumptions and idealizations, respectively.  

1.4 Fracture Toughness and Stress Intensity 

This section describes the fracture toughness (Kc) for linear elastic materials undergoing 

brittle fracture. A materials’ ability to resist brittle fracture with a crack present is 

quantitatively expressed by its fracture toughness (see eq. 2a-b). It is important to note 
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that fracture toughness is dependent on the materials thickness. A sample under plane 

stress conditions, which typically occurs in thin plates, has a highly variable Kc value 

whereas, a thick sample under plane strain conditions, has a constant value for Kc [3, 4, 

10]. The Kc values for materials presented in text books and material data sheets are 

assumed to be for plane strain conditions. The ASTM thickness standards for plane strain 

conditions under varying loading conditions and geometries can be found in the Annual 

ASTM Standards Books.   

 

Figure 1.4: Fracture toughness is affected by thickness. The blue regions represent 

ductile fracture (shear lips) while the brown is brittle fracture [11]. 

Part of Irwin’s revisions of Griffith’s equations was to rewrite the strain energy density in 

terms of stress because a value for stress is much easier to obtain than a value for strain 

energy. The resulting equation is: 

K ac fr= βσ π  (3) 

where β is a geometry factor, σf is the stress at failure, and a is the crack length. Values 

for β have been determined from equations empirically fitted to the results of numerous  
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fracture tests of varying geometry conducted under 

constant loading conditions. The equations for 

different geometries can be found in fracture 

handbooks.  

The stress intensity experienced by a material 

is dependent on the loading conditions and crack 

geometry. The loading conditions are broken down 

into thee major modes. Mode I, or crack opening, 

where stress is applied normal to the plane of the crack 

resulting in a tensile stress. Mode II, crack sliding, 

where the stress is acts parallel to the plane of the crack and perpendicular to the crack 

front creating a shear stress. Lastly Mode III, crack tearing, where the stress acts parallel 

to both the crack plane and front also creating a shear stress. Mode I is the most common 

and typically the dominant modes of failure when present [10, 12]. The different Modes 

of failure are shown in Figure 1.5. 

1.5 The J-Integral  

The J-Integral is a method used to determine the fracture criteria for cases of both 

LEFM and EPFM based on the conservation of energy [3, 13]. The J-Integral itself is 

defined by integrating the strain energy density over an arbitrary path around the crack 

tip. Since the contour selected for integration can be arbitrary the J-Integral is considered 

path-independent.  

 The novelty of the path independent approach is that it allows the user to select a 

contour far from the crack tip where the stress and strains are well-defined, bypassing the 

 

Figure 1.5: The three modes 

of failure [11].  
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necessity to determine the complex stress-strain states in the area immediately 

surrounding the crack tip. The general fracture equation for the J-Integral is: 

J wdy T
u

x
ds= −






∫

∂
∂

Γ

 (4) 

 

where Γ is the arbitrary path of the contour around the 

crack, u is the displacement vector, y is the distance 

along the direction normal to the plane of the crack 

(the thickness), s is the arc length along the contour, T 

is the traction (or force) vector and w is the strain 

energy density of the material [3, 14].  Figure 1.6 

helps to visualize the J-Integral.  

 One of the primary difficulties inherent in the 

energy approach is deriving an approximate equation 

for the stress-strain curve to evaluate the strain energy. 

The Ramgood-Osborne equation is the must common method used for approximating the 

stress-strain equation. However, a major drawback of the non-linear approximation is its 

inability to mimic the unloading path followed by actual materials as shown in Figure 

1.7. As a consequence of this 

shortcoming, EPFM can only be 

applied to monotonic loading 

situations. For the linear elastic case, 

the J integral reduces to the strain 

energy release rate G [15].  

 

Figure 1.6: Two path-

independent contours around 

a crack tip in an infinite plate 

 

Figure 1.7: The loading and unloading paths 

of (a) LEFM, (b) a plastically deformed 

material, (c) the non-linear idealized curve 

that is the basis of EPFM [3] 
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CHAPTER 2 

POLYMER COMPOSITES 

2.1 Deformation of Polymers 

 The mechanical properties of polymers are heavily temperature dependent. 

However, the temperature of the simulations discussed in this paper will be held constant 

at approximately room temperature (~15
o
C, or ~60

o
F ). This temperature is well below 

the polymer’s glass transition temperature, assuring that the material will demonstrate the 

mechanical properties and deformation 

characteristics of a glassy polymer.   

 The two primary deformation 

mechanisms of glassy polymers at low 

temperatures are crazing and shear yielding. 

The dominant method of deformation 

depends on both the temperature and loading 

conditions. A simplified depiction of the 

differences between shear yielding and 

crazing is shown in Figure 2.1. 

 Shear yielding, or shear banding, is 

the flow of molecular chains or the slipping 

of intermolecular chains parallel to the plane of maximum shear stress (usually at a 45
o
 

angle to the tensile axis) [16]. Shear bands are initiated at stresses below the tensile 

strength and are accompanied by no change of volume [12].  

 
                 (a)                                 (b) 

Figure 2.1: The two primary 

deformation mechanisms for polymers 

are shear bands (a) and crazes (b).  
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 Crazing is more favorable at lower 

temperatures and under positive mean pressure. 

Crazes form perpendicular to the axis of 

maximum stress and are characterized by 

regions of highly oriented molecules separated 

by porous regions as shown in Figure 2.2. The 

oriented molecules, or fibrils, are stronger than 

the general polymer matrix. However, when 

factoring in the porous areas the overall craze 

region is weaker than the surrounding polymer. 

The crazes also locally increase the volume and the resulting differences in volume 

between the crazed and uncrazed regions cause a stress concentration along the boundary. 

The increased stress along the boundary further propagates the craze in a direction 

normal to the principle stress axis. Materials that exhibit crazing generally have a higher 

fracture toughness than those that don’t [12, 16]. 

 The introduction of reinforcement elements to a polymer matrix can drastically 

alter the fracture toughness as well as other mechanical properties of the polymers.  A 

great deal of research has gone into studying the effects of reinforcing polymers with 

microparticles and/or fibers and those results will be presented in subsequent sections. 

Very little research has been conducted into how the addition of both microparticles and 

nanoparticles could affect the properties of a polymer composite.  

 The intent of this thesis is to validate a multi-scale simulation technique that will 

allow researchers to investigate this little studied area and determine the feasibility of 

 

Figure 2.2: An uncrazed crack (a) 

and a crack with crazing near the 

crack tip (b). 
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creating a tough, stiff polymer composite using minimal volume fractions of particle 

reinforcement [17].   

2.2 Fiber Reinforcement 

 Some of the most common composite materials are created by reinforcing a 

polymer matrix with fibers. These composites offer a compromise between the high 

stiffness and strength of the fibers and low stiffness and strength of the polymer. An 

added benefit of composites due to the nature of the interaction between the fiber and 

polymer matrix during loading is an increase in fracture toughness much higher than 

either of the individual components.  

During fracture, fibers reinforce the polymer matrix by distributing the increased 

load near the crack tip over a larger area increasing the zone of plastic deformation and 

thus the energy dissipated. Furthermore, for a crack to propagate past the fibers the fibers 

must be either broken or pulled out of the matrix, both phenomena aid in the dissipation 

of energy, and a broken fiber can still transfer load in a polymer so long as the pieces 

remain longer than a critical length [12].  

   Fiber reinforcement is done with both long and short fibers. The fibers can be 

oriented in specific directions or randomly distributed throughout the matrix. The success 

of the fiber, or particle, reinforcement depends largely on the interfacial bonding between 

the polymer and reinforcement [18].  
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2.3 Microparticle Reinforcement 

 Microparticle reinforcement can have a significant impact on the mechanical 

properties of a polymer. In many cases a polymer can be tailored for a specific 

application by altering the type and volume fraction of the particle reinforcement. For 

polymers reinforced with a low volume fraction of microparticles, a decrease in 

toughness accompanied by a slight increase in stiffness has been observed [19]. On the 

contrary, soft micro-sized reinforcements, such as rubber particles, have been shown to 

substantially increase the toughness.  

 Toughening a polymer with soft particles enhances the permanent deformation 

around the crack tip, thus increasing the size of the plastic zone [20]. The modulus of the 

soft particles is much smaller than that of the surrounding polymer matrix. This mismatch 

in modulus results in three mechanism that retard crack growth. The first two 

mechanisms are crack tip blunting 

and craze promotion.  

 When a crack propagates 

into a soft particle the crack tip 

radius instantaneously increases to 

that of the soft particle. This 

blunting of the crack tip decreases 

the stress concentration at the tip of 

the crack. The second toughening 

mechanism results from soft particles in the vicinity of the crack tip. High stresses around 

the crack tip compress and elongate the soft particles which promotes the growth of 

                   
                                            

Figure 2.3: Microparticles cause crazes and 

crack tip blunting [12].  
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crazes in the polymer.  Figures 2.3 illustrates the effect of crack tip blunting and craze 

promotion cause by soft particle reinforcement.  

 The third toughening mechanism is a result of the soft particles cavitating under 

the enormous hydrostatics stress common around the crack tip. Cavitation of the rubber 

particles results in a void that both increases surface area and allows room for plastic 

flow, which is conducive to shear yielding [21-23].  Essentially, the cavitation acts as a 

pressure relief valve with the particles failing prior to the polymer. Larger particles tend 

to cavitate first and there is a minimal radius necessary for cavitation to occur which 

depends on the material properties of the particle and its surface area to volume ratio. 

Particles with a small ratio (large diameter) have been observed to be more likely to 

cavitate [24, 25]. However, if the reinforcement particles are too large they can cause 

flaws in the matrix which weaken the polymer.  Reinforcement with microparticles  

ranging from 0.1-10µm in diameter have been shown to yield the greatest increase in 

fracture toughness [21]. The side effect of toughening with soft particles is a substantial 

decrease in stiffness to the original polymer.   

2.4 Nanoparticle Reinforcement 

 Nanoparticle reinforcement is another 

common method for altering the properties of a 

polymer. Nanoparticles have much larger 

surface area to volume ratios and as a result do 

not cavitate, unlike the larger microparticles. As 

such, the dynamics of the nanoparticle-polymer 

interaction are drastically different than those of the microparticle-polymer interactions.   

 

                                                                   

(a)         

 

                           

                                             

(b)                                                                                  

Figure 2.4: A planar crack (a) 

absorbs less energy than a ‘jagged’ 

crack (b). 
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 The addition of low volume fractions of rigid nanoparticles to polymers has been 

shown to drastically increase the stiffness while decreasing the toughness. The 

embrittlement is generally attributed to nanoparticles interacting with crazes and causing 

them to break down forming larger voids and propagating the crack. At higher volume 

fractions, nanoparticles have been shown to increase the toughness through mechanisms  

of crack deflection and the resulting increased surface roughness/area as shown in Figure 

2.4 [26]. The increased roughness results form the tortuous path of propagation necessary 

for the crack to avoid areas with high concentrations of reinforcement which are harder to 

propagate through.  It can be concluded that nanoparticle toughening requires a balance 

between increasing plasticity without drastically increasing the damage formation in the 

immediate vicinity of the crack the tip [27].  

 The stiffness of the nanoparticle can also influence the dynamics of crack growth 

and the extent of damage in the polymer preceding the crack tip. Figure 2.5 shows the 

effects of nanoparticle stiffness on crack propagation and damage in a polymer. 

 
                      (a)                                         (b)                                        (c) 

Figure 2.5: Molecular simulations of damage around a crack tip for an unreinforced 

polymer (a) and a polymer nanocomposite with nanofiller to polymer stiffness ratio 

10:1 (b) and 1:10 (c). Cyan dots indicate damage zones and blue lines illustrate 

plastic flow [28]  
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2.5 Micro and Nano Reinforcement 

 The individual effects of microfiber, microparticle, and nanoparticle 

reinforcement have been thoroughly studied and the highlights have been reviewed in the 

previous sections. Research has also demonstrated that the synergistic mechanisms of 

particle and fiber reinforcement, at the micro level, can lead to both an increase in 

stiffness and toughness of a polymer [27].  

 The preceding discussion manifests the results of empirical studies which indicate 

that a stronger, stiffer, and tougher polymer could be realized through micro and 

nanoparticle reinforcement. Accurate models that can simulate the interactions between 

the microparticles, nanoparticles, and polymer would give insight into how and why this 

method of reinforcement is effective. These models can then be used to facilitate 

parameter studies and minimize the fabrication and testing required for validating 

specific phenomenon.  
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CHAPTER 3 

COMPUTATIONAL FRACTURE MECHANICS 

3.1 Challenges of modeling crack propagation.  

The challenges that arise when modeling crack initiation and propagation can be 

subdivided into the following categories: material, mechanical, geometric, and 

transitional. During crack nucleation and propagation both elastic and plastic deformation 

occurs in the material. Modeling the elastic-plastic deformation results in a nonlinear 

idealization of the material’s stress-strain curve. The idealized curve does not accurately 

represent the unloading of the material in the simulation (as discussed previously) and 

increases the computational complexity of the simulation [29].   

The mechanical requirements, often referred to as the relevant crack growth 

parameters, are extracted from a stress analysis of the model and used to determine the 

crack extension, growth direction, and shape. Stress intensity or energy considerations are 

the primary properties used to determine the crack growth parameters [30]. Additional 

complications can arise during non-planar crack growth when the opening and closing of 

the crack results in contact between the crack surfaces and causes mixed-mode fracture.  
 

The geometry of the model also changes as the crack propagates. The change in 

geometry must be accounted for in order to accurately evaluate the mechanical 

requirements listed above. A new stress analysis must be performed for each incremental 

crack step to update the crack growth parameters. Depending on the method used to 

simulate the crack propagation updating the stress field may, or may not, require re-

meshing the model.  
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Lastly, most methods for evaluating crack propagation require a number of 

different length scales. A macro-scale analysis can be conducted on the majority of the 

part but the key area of interest, the area around the crack, must be evaluated at a micro- 

or nano-scale to more accurately simulate the crack growth. The transition in the model 

from larger to smaller length scales must be seamless in order to ensure the continuity of 

the model [30].  

The methods used to evaluate the models at different length scales must also be 

taken into consideration. Continuum theory is not expected to be valid as the length scale 

of the analysis approaches that of the radius of gyration of the polymer. The radius of 

gyration is statistically defined as the root mean squared distance between the centroid of 

the polymer chain and each of its monomers [32].  The average polymer chain length for 

a material similar to that used in the simulations presented in this paper (similar to Nylon 

6,6) is expected to be approximately .5-1.5 µm. The chains, which are composed of the 

mers presented in Figure 3.1, are expected to assume a random coil configuration with 

outer dimensions scaling with the square root of the number of monomers in the chain 

[33]. The resulting 

radius of gyration 

would be 

approximately 100 nm. 

Therefore the 

constitutive equations that govern the FEA will not be applicable at the very tip of the 

crack, which is an area of specific interest in this paper [34]. The novelty of the modeling 

 

Figure 3.1: A Nylon 6,6 mer. The degree of polymerization 

is expected to be ~420, resulting in an average chain length 

of ~905 nm and a radius of gyration of ~30 nm [31]. 
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approach discussed in this paper lies in the implementation of a Normal Mode Analysis 

in the immediate vicinity of the crack tip in place of the invalid FEA.  

3.2 Basic Modeling Procedure  

 Crack analysis is an incremental process that starts with a representation of the 

model which includes: the geometry, boundary conditions, initial cracks and material 

properties. The representational state is then discretized by a mesh. The discretized model 

can then be evaluated by a solver. The solver performs the stress analysis from which an 

equilibrium database is created and the relevant fracture parameters are gleaned. The 

equilibrium parameters include such variables as stress and displacement while the 

fracture parameters commonly include stress intensity or energy considerations that are 

necessary to determine crack growth and direction. The original representational model is 

 
                (a)                                 (b)                              (c)                              (d) 

Figure 3.2: The progression of crack propagation simulation: The model geometry 

and boundary conditions are defined (a), the model is then discretized (b) and 

solved (c). Crack growth and direction is determined from relevant fracture 

parameters (d). The original model would then be updated to reflect changes.  
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then updated to reflect the changes incurred by the crack growth. Figure 3.2 shows a 

diagram of the process [35-38]  

3.3 Methods for Modeling Crack Propagation 

There are a variety of different methods used to analyze crack propagation 

including boundary representation (B-Rep), finite-difference, finite-element (FEM), and a 

host of meshless methods including the element-free Galerkin method (which differs 

from FEM by replacing the mesh by nodes with weight functions [39]) and the Lattice-

Spring Models (LSM) sometimes referred to as Elastic Network Models (ENM) [37]. As 

a result of the complexity of crack propagation many of the methods require 

oversimplification of the crack details in order to conduct an analysis. The 

oversimplification leads to inaccurate results. However, two methods, FEMs and the 

ENMs, have proven to be the most versatile and accurate over a wide variety of 

conditions. 

 There are a variety of commercial FEM modeling packages on the market, the 

most prominent being ANSYS, ProE, Solid Works, and COMSOL. The commercial 

packages are all inclusive, coming with all the necessary applications to create, apply 

loads to, mesh, and analyze a model. The software selected for the FEM modeling 

discussed in this paper was COMSOL. COMSOL was selected because of its versatility, 

accuracy, user friendly graphic user interface, and its scripting application which easily 

interfaces with MATLAB. The ENM that will be used to evaluate the region around the 

crack tip is a MATLAB program created by Professor Moon Kim. This particular ENM 

uses a Normal Mode Analysis (NMA) to solve the potential functions governing the 

dynamics of the system and determine the displacement and direction of the nodes 
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comprising the network. More information on COMSOL and the ENM will be presented 

in ensuing sections.   

3.4 Finite-Element Methods 

 FEM programs are most commonly used to evaluate the stress fields present in 

parts and assemblies under given equilibrium and loading conditions. These programs 

reduce the partial differential equations governing the underlying physics of the model 

into a series of polynomials that can than be evaluate at discrete points defined by the 

mesh [40]. Therefore, the accuracy of these models is heavily dependent on the mesh 

applied to the model. The mesh needs to be fine in order to minimize the error incurred 

by extrapolating data between nodes. Unfortunately, a fine mesh takes more memory to 

create and analyze thus increasing the computational cost of the analysis. Also, in some 

case the mesh size could be scaled smaller than the lower limits of continuum mechanics. 

At this scale the basic assumptions on which the governing constitutive equations are 

based, are no longer valid. At the other end of the spectrum a coarser mesh acquires 

greater error by increasing the range of extrapolation between nodes. The advantage of 

the larger meshes is that they can be evaluated much quicker than the finer meshes.  

 Striking a balance between a fine and coarse mesh 

is imperative for obtaining accurate results in a timely 

manner. In many cases a mesh gradient can be 

implemented, as shown in Figure 3.3 allowing a finer 

mesh to be located in more critical regions, such as 

around a stress concentration, and a coarser mesh in more 

 

Figure 3.3: A block with a 

mesh gradient.  
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stable regions. The simulations in this paper will use a mesh gradient similar to the one 

shown in Figure 3.3.     

 While most FEM programs are capable of performing a nonlinear analysis of a 

part with elastic-plastic material properties it’s very uncommon for them have the ability 

to simulate crack initiation and growth. An extremely fine mesh in the vicinity of the 

crack tip is necessary to allow the crack to propagate along an arbitrary path. The fine 

mesh must also be reapplied to the model after each incremental crack step. The 

computational cost of solving and reapplying the mesh is exorbitant and is the primary 

reason commercial FEMs don’t model fracture [29, 36]. However, updating the original 

geometry after the crack growth is also a difficult process.  

 There are a few independent software applications that have been created to work 

in conjunction with the commercial solvers to simulate crack growth. The most 

prominent of these is FRANC3D, a 3D FRacture ANalysis Code, created by the Cornell 

Fracture Group. FRANC3D automates the discretization and update process necessary to 

model crack propagation [37]. FRANC3D has demonstrated accuracy in modeling cracks 

as complex as 3D non-planar and is available as a free download from the Cornell 

Fracture Group’s website[42, 43]. FRANC3D is limited to isotropic materials with 

known bulk characteristics and does not account for non continuum behavior below the 

limits of continuum mechanics. Although FRANC3D is not used for any of the 

simulations presented in this paper the concept of its methods and processes are very 

similar to what is hoped to be accomplished in this research. 

3.5 Overview of Elastic Network Models 

A typical ENM is composed of a 2D or 3D arrangement of 1D springs where the  



www.manaraa.com

 23 

atoms or particles are represented by the nodes, and the springs represent the bonding 

force between the atoms or particles [44]. ENMs are considered meshless because the 

nodes are not resultant from a mesh. By patching nodes instead of a mesh around a crack 

the model doesn’t have to be re-meshed after each increment of crack propagation, which 

greatly reduces the simulation’s computational demand. An example of a network that 

could compose an ENM is shown in Figure 3.4.  

 ENMs can be used to model all the atoms in a system, however, as the size of the 

 system increases this approach becomes 

inefficient and too computationally costly to 

be conducted on anything less than a super 

computer [45, 46]. To mitigate the 

computational demands coarse-grained ENM 

have been developed. Coarse-grained ENMs 

simplify the analysis by only modeling a part 

of the structure being studied. For example 

only the alpha C atoms in a protein structure 

or just the carbon amides in a polymers’ chain 

would be assigned as point masses and connected by the springs. Comparing the results 

of coarse grained ENMs to those of all-atom systems and experimental findings have 

shown them to be sufficiently reasonable and accurate for predicting the overall dynamics 

of the system [47].   

 Once the nodes in the network have been designated the virtual springs must be 

applied to account for the interactions between atoms/molecules. There are two 

 

Figure 3.4: An example of the 

network of nodes and springs 

composing an ENM [28].  
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predominant methods for determine how and where the springs will be applied, they are 

the distance cut-off and chemical bond method. The distance cut-off method connects a 

node to all the other nodes within a certain proximity of it. Selecting an inappropriate cut-

off distance will result in an over or under representation of the global stiffness by 

incorrectly accounting for the interactions between nodes. The resulting model will be 

unstable and inaccurate [46, 48].  

 The chemical bond method reduces the degrees of freedom of the system by 

connecting four consecutive particles that compose the backbone of the structure. The 

randomly applied bond length, angle, and direction limit the degrees of freedom of the 

model. This procedure stabilizes the elastic network resulting in more accurate and robust 

solutions [46].  

The values of the virtual springs must then be selected to accurately depict the 

different bond forces found in the system being modeled. For polymers that means there 

will be different spring values to represent both the primary (covalent) bonds along the 

polymer’s backbone and weaker secondary (hydrogen and Van der Waals) bonds 

between the different polymer chains [49].   

ENMs are also able to model elastic-plastic material properties that would be 

found around the tip of a crack by altering the spring constants to account for the 

nonlinear effect of plasticity and ultimately breaking after a certain elongation. Similarly 

in a heterogeneous material, such as a nano-reinforced polymer, the interface between the 

particle and polymer matrix can be adjusted by altering the spring constant between the 

nodes representing the matrix and those representing the reinforcement particles.  In the 
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case of the reinforced polymer, a Monte Carlo simulation would then be performed to 

equilibrate the model [50].   

However, some ENM simulations of plastic deformation have concluded with 

Poisson’s ratios of less than .5 in areas of plastic deformation indicating a failure 

conserve volume and casting some doubts on the validity of the model [51].
 
Another 

drawback to ENMs are occasional stress anomalies that occur along particle surfaces. 

These errors can be minimized by altering the spring constants representing the 

interfacial bonds [50].   

Once an ENM is set up the equations governing the dynamics of the system must 

be assigned and solved. The most common method for solving the system of equations is 

NMA. NMA approximates the empirically prescribed potential functions as harmonic 

functions and analyzes the lowest mode frequencies which are most suitable for 

describing the global motion of the system [45, 46].  The drawback to NMA lies in its 

inability to account for anharmonic motion and highly detailed atomic motion ( a result of 

evaluating only the low frequency modes) [45]. The specific ENM used in this research 

will be discussed in greater detail in a later section. 

3.6 COMSOL Multiphysics and the ENM 

 This section gives a more in-depth perspective of how the programs selected for 

this research will be set-up to accomplish their specific tasks.  

3.6.1 COMSOL Multiphysics v3.3 

 COMSOL Multiphysics performs equation-based multiphysics modeling with a 

user-friendly interface [52]. COMSOL offers a variety of modules that facilitate the 
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analysis of specific scientific and engineering phenomenon. The 2D Plane Stress 

Structural Mechanics module was utilized for this research. Recall that the plane stress 

condition dictates that σz, τyz, and τxz are assumed to be zero in the stress tensor. The 2D 

model allows for loads in the x and y direction and assumes that these loads are constant 

through the thickness.  

3.6.2 The Elastic Network Model 

 The ENM used in the simulations presented in this thesis will use the cut-off 

distance method to determine how the springs will be applied between each node. Only 

structural information will be used to define the potential functions governing the system 

dynamics [53]. A NMA will be used to solve the constitutive equations of the system and 

the corresponding direction and displacement for each node in the network will be 

obtained from the eigenvectors and eigenvalues, respectively, resulting from the solution 

[17].  

 The ENM aspect of this research will follow these iterative steps: i) the initial 

model will be created in an equilibrated state ii) NMA will be applied to find a few of the 

slowest modes, iii) perturb the initial conformation by adding a scaled slowest mode, iv) 

evaluate the plastic flow and the damage zone by measuring the change in spring lengths, 

v) rebuild the elastic network for the deformed conformation, and vi) back to step ii) and 

repeat the preceding procedure [17]. 

 To model a nano reinforced polymer a portion of the nodes in the lattice spring 

network will be replaced by the nanoparticles and the spring values connecting them to 

surrounding nodes, as well as their sphere of influence will be adjusted accordingly.   
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3.6.3 Integrating COMSOL and the ENM 

 A seamless interface between COMSOL and the ENM was necessary to ensure 

accurate and realistic results. The ENM was responsible for modeling the material within 

a half micron around the crack tip. The large ENM patch size assured the patch 

boundaries fell within the region where continuum mechanics is applicable. This ensured 

the results from the FEA of outer portion of the model were valid and also allows the 

results of the coupled schemes to be compared to the results of a full FEA of the same 

geometry.  

 The COMSOL and ENM simulations were performed discretely. Each aspect of 

the simulation was run to convergence before passing data to the next step. This process 

was than iterated five times, which was sufficient for all models to converge.  

 The modeling process began with the part’s geometry being created in COMSOL. 

Boundary conditions were applied and the part was meshed. For the initial iteration the 

patch boundaries were fully confined by setting the allowable displacement equal to 0 in 

all directions. COMSOL then determined the stress and displacement conditions that 

existed throughout the model.  

 The force along the patch boundary was than output to the ENM. An interpolation 

function, internal to COMSOL, was used to determine the force values for the ENM 

nodes that did not coincide with an element vertex from the COMSOL mesh.  

 The ENM then computed the nodal displacements and directions, both along the 

boundary and throughout the network, from the applied boundary forces. Ultimately the 

nodal displacements would be compared to a stop criterion (such the percent change in 

outputs between successive iterations) to determine if the simulation would continue or 
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stop. [17]. For the simulations presented in this research the number of iterations was set 

to six. An overview of the simulation process can be seen in Figure 3.5.  

From the perspective of COMSOL, the ENM looks like a complex user defined 

constitutive stress-strain relation. Fortunately COMSOL was designed to interface with 

MATLAB and the ENM was written as a MATLAB file. The mutual affiliation to 

MATLAB shared by both COMSOL and ENM eased the “handshaking” between 

models.  

 

Figure 3.5: Flow chart of the multi-scale modeling process.  
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CHAPTER 4  

IMPLEMENTATION OF HYBRID ENM-FEA MODELS 

 The intent of this research was to determine the feasibility and limitations of an 

ENM-FEA coupled analysis scheme by analyzing the simulation results of increasingly 

complex models. Validation of the ENM-FEA scheme was tested by comparing the 

outputs along the patch boundary of the ENM-FEA simulation to those of a FEA-FEA 

and single-region FEA simulation.  

 The majority of the models studied did not have cracks present in their 

geometries. Therefore the results from the single-region FEA were an accurate 

benchmark to compare the results of the coupled simulations. Results from the single-

region FEA evaluation of cracked geometries were expected to be accurate in regions far 

from the crack tip and were still used as benchmarks for the coupled analysis schemes. In 

all cases the results of the FEA-FEA closely followed those of the ENM-FEA scheme but 

the FEA-FEA scheme took less than a minute to complete most simulations while the 

ENM-FEA scheme took over an hour (based on a five iteration simulation). As a result of 

the time disparity it was advantageous to run the FEA-FEA scheme prior to the ENM-

FEA scheme to initially explore new scenarios and resolve any potential problems with 

data exchange between models (coupling) or boundary conditions.  

 Over all, the two coupled analysis schemes were used to analyze models with two 

different material properties, under three different external loading conditions, and six 

different geometries. An overview as well as an explanation for the analysis schemes, 
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material property, and external loading selection process will be presented in this chapter. 

The model geometries will be discussed in subsequent chapters. 

4.1 Analysis Schemes 

 All of the models can be broken up into two parts; an outer region and a patch 

region. The outer region was where the external loads were applied and was always 

analyzed using FEA. Internal loads were transferred to the patch region which was 

evaluated by either FEA or ENM. This led to two coupled analysis schemes: FEA-FEA 

and ENM-FEA.  

 Regions evaluated by FEA required a mesh. The element size along the boundary 

between the outer and the patch region was 

confined to 50nm. An unconstrained free mesh, 

constructed by the FEA software, was implemented 

in the remainder of the subdomain. An 

approximation of the mesh can be seen in Figure 

4.1. A mapped mesh could have been implemented, 

and was in preliminary research, but applying a 

mapped mesh became cumbersome after the 

introduction of the necessary point constraints to 

prevent rigid body motion in later models. Results 

between models analyzed with both free and 

mapped meshes were indistinguishable.  

 Regardless of the analysis scheme (FEA-FEA or ENM-FEA) the order of data 

transfer across patch boundaries was consistent. The outer-region was analyzed first with 

 

Figure 4.1: Mesh gradient in the 

stick model. 



www.manaraa.com

 31 

an external load applied to the top and bottom boundaries and zero displacement inputs in 

all directions applied at the patch boundaries. Forces both normal and tangential to the 

patch boundaries resulted from the imposed displacement conditions. The normal forces 

were then transferred to the patch model. The patch was analyzed and the resulting 

normal displacements were exported to the outer region.  

 It was not necessary to exchange the 

tangential data between boundaries because the 

sum of the tangential data along a boundary is 

represented by the normal force vector on the 

boundary perpendicular to the original boundary, 

as shown in Figure 4.2. During the analysis the 

normal force scalar from the perpendicular 

boundary (F2) is incremented over the length of 

the boundary (top row) in order to best satisfy the 

internally prescribed equilibrium conditions. Preliminary simulations confirmed that 

excluding the tangential data had negligible effects on the results. 

  Iterations were expected for the coupled analysis schemes to converge. The 

iterations were necessary as a result of the unnatural zero displacement constraint initially 

applied to the interfacial boundaries in the coupled analysis. These imposed boundary 

conditions caused stress concentrations in the vicinity of the boundaries that resulted in 

force outputs that were larger than what would have been observed in a model without 

the overconstrained boundary (like the single-region FEA model). The higher forces were 

transferred to the ENM and caused larger displacements than predicted by the single-

 

Figure 4.2: F2 is distributed 

through the top row the same way 

F1 is distributed through the third 

column.  
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region model. The large displacements compressed the outer region and the subsequent 

force outputs were negative causing smaller than expected displacement outputs and 

continuing the cycle until eventual reaching an equilibrium state in which outputs from 

consecutive iterations were the same. Conditioning the data exchanged between the 

coupled models expedited convergence. Details of the data conditioning algorithms will 

be presented in §5.3.1 and §5.3.2.  

 Convergence was determined by comparing the displacement outputs of 

consecutive iterations. If the average absolute value of the percent error between the final 

two iterations was less than 1.0% percent, the model was considered to have converged. 

The convergence was based on the displacement outputs because they were not 

conditioned at any point in the simulation. In all cases the force convergence was better 

than the displacement convergence.  

 Accuracy of the simulation was determined by comparing the displacement values 

from the final iteration to either an analytical solution, when available, or the single-

region FEA analysis of the same model. When the average absolute value of the percent 

error of the final FEA-FEA simulation was less than 2.0% of the solutions', the model 

was considered to be accurate. The ENM-FEA results where compared both to the overall 

solution as well as the FEA-FEA solution to determine an absolute and relative accuracy, 

respectively. Accurate ENM-FEA results were considered to be within 0.20%
2
 percent of 

the FEA-FEA model. This implies converged within 2.2% percent of the actual solution. 

In all cases an absolute accuracy implied relative accuracy as well (the ENM-FEA results 

were never better than the FEA-FEA results).   

                                                 
2
 This value was determined by comparing the displacement results of the patch region, under the same 

loading condition, from an FEA and ENM analysis. The average deviation between results of the two 

methods was 0.20%. 
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  No algorithm was applied to stop the iterations when the models had reached a 

set convergence value. Instead, each simulation was run for a total of five iterations. All 

of the models were able to converge in fewer than five iterations; the additional iterations 

after convergence were a test of the models numerical stability and also gave further 

insight into convergence characteristics between successive iterations in the coupled 

schemes.  

4.2 Material Property Selection and Validation 

 One of the eventual applications of the coupled ENM-FEA modeling scheme is to 

analyze nanoreinforced polymers which can be both isotropic and anisotropic. The 

material properties used for the isotropic and anisotropic models were selected to 

represent generic isotropic and anisotropic polymer material properties, not a specific 

material. The method used to determine the exact material properties used in the research 

is described in the subsequent paragraph. 

 The first step was to determine a range of acceptable values for the modulus of 

elasticity and Poisson’s ratio for both the isotropic and anisotropic materials. Poisson’s 

ratio was set to 0.3 and the upper and lower limits of the elastic modulus were applied to 

the patch region. The patch region was than analyzed by the FEA software (after 

applying an external load). The displacements results of the analysis were recorded for 

later use.  

 The patch region (subjected to the same external loading conditions) was than 

analyzed with the ENM. The spring constants of the ENM were altered until the 

displacement output fell within the range established by the previously mentioned FEA. 
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The material properties of the FEA were then adjusted so the displacement outputs from 

both analysis’s (FEA and ENM) of the patch were as close as possible.  

 The final values selected for the elastic modulus and the Poisson’s ratio for the 

isotropic case were 168.5 GPa and 0.496, respectively. Poisson’s ratio for the ENM was a 

consequence of the spring stiffness and connection characteristics implemented in the 

model; a numerical value could not be explicitly assigned. In future models the value of 

the spring stiffness, as well as how the springs connect the nodes can be altered to result 

in a more realistic Poisson's ratio.  For the anisotropic case the elastic modulus in the y 

direction was 146.5 GPa and the modulus in the x and z direction was 73.3 GPa. A 

Poisson’s ratio of 0.3 was used in all directions for the anisotropic case. 

 Equivalent material characteristics for the isotropic case in the ENM were 

obtained by setting all spring constants equal to 100/91 [N/m]. For the anisotropic case 

the vertical spring constants remained 100/91 [N/m] while both the diagonal and 

horizontal spring constants were set to 50/91 [N/m]. 

 Displacement results for the patch region under uniaxial external loading (0.001 

[N/m] force/length applied to top and bottom boundary) for the isotropic case are shown 

in Figure 4.3. The ENM displaces on average 0.20% more than the FEA results and 

almost 2.0% more at the corners. Results of the anisotropic case were similar.   
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 The patch was also validated for a biaxial external loading case (same as uniaxial 

with 0.0003 N/m force/length applied to side boundaries). The results of both the 

anisotropic and isotropic case looked similar; displacements from the isotropic case are 

shown in Figure 4.4. The top and bottom boundaries under biaxial loading displaced on 

average 0.10% with a maximum deviation of 1.0% at the corners. The better accuracy 

obtained from the biaxial loading case was attributed to the compressive forces applied to 

the sides of the patch which would reduce the over extension of the corner node by 

effectively pulling it in. 

 

Figure 4.3:  Displacement results of FEA (red) and ENM (blue) analysis of the patch 

region under a uniaxial load. The top, bottom, right and left boundaries are denoted 

in this and all subsequent legends as ‘t’, ‘b’, ‘r’, and ‘l’, respectively. 
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 In all case the displacement outputs of the ENM are curved while the 

displacement outputs of the FEA appear constant thought the length of the boundary. The 

parabolic nature of the ENM output is a result of the lack of springs connecting the outer 

row of nodes to the rest of the ENM. The majority of the nodes in the ENM have eight 

springs connecting them to their neighbor nodes. Nodes along the ENM edge have only 

five springs, and the corners have only three, as shown in Figure 4.5. The lack of springs  

results in decreased stiffness, and explains the 

increased displacement experienced by the ENM, 

which is particularly noticeable at the corners. 

 The parabolic nature of the ENM outputs is 

diminished by two phenomena during the coupled 

schemes. Physically, the patch is located in the 

middle of a block in the coupled schemes. The material surrounding the patch acts as an 

added constraint to the ENM model and would prevent the corners from displacing as 

much and correct it over subsequent iterations.  

 

Figure 4.4: Displacement results of FEA (blue) and ENM (black) analysis of the 

patch region under a biaxial load.   

 
 

Figure 4.5: Close up of corner 

and boundary nodes in ENM.  
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 In an effort to limit the displacement of the corner nodes in the ENM a uniform 

uniaxial load was applied to the first row into the ENM from the second to second to last 

column. The patch was evaluated and the results were compared to those of the patch 

under ‘normal’ uniaxial loading (force applied along the top row). This technique did 

nothing to lessen the exaggerated displacement of the corner nodes.  

 Ultimately, a cutoff algorithm was also used to limit the displacement of the 

corners in the initial iteration (which was unaffected by the surrounding material) to 

accelerate convergence. More detail on this algorithm is given in §5.3.1.      

4.3 External Loading Conditions 

 Three different loading conditions, all tensile, were applied to the models. Tensile 

loads, as opposed to compressive loads, were selected because they are more conducive 

to crack growth. The first loading case (a) was a uniform 0.001 N/m. The second case (b) 

was non-uniform but symmetric with respect to the y axis and varied in magnitude from 

0.001 N/m to 0.0006 N/m. The third case (c) linearly decreased in magnitude from 0.001 

N/m to 0.0005 N/m. In all cases the load was applied along the top and bottom boundary. 

The loading cases are shown in Figure 4.6.  

 The uniform loading case was 

applied to all the models. The non-

uniform cases were only applied to 

models without a crack included in the 

geometry. The non-uniform loading cases were applied to the uncracked model to 

determine how the coupled analysis schemes would handle nonuniform loads across the 

patch boundary. The presence of cracks in any of the model’s geometry would also result 

 
(a)                      (b)                    (c) 

Figure 4.6: Loading Conditions 
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in non-uniform loads across the patch boundaries. Observing the effects of the non-

uniform loading conditions, without having to consider the complexities cause by a crack 

tip, represented a controlled step in the progressively complex modeling method.  

 The uniform force per length of 0.001 N/m was selected because it resulted in a 

100 MPa stress throughout the un-cracked geometries. This stress falls within the elastic 

region (which is where FEA is valid) for most materials, including the isotropic and 

anisotropic models used in this research. The applied force/length still caused unrealistic 

stress values at crack tips (for models containing cracks in their geometry) when 

evaluated with FEA. The inflated stress values were expected, but their effect was 

localized to within a small vicinity of the crack tip and the stress field had fully relaxed to 

reasonable values well within the limits of the patch region. This observation is important 

because it indicates the force and displacement outputs at the patch boundaries are 

unaffected by the exaggerated stresses of the crack tip and therefore like models 

evaluated by different schemes can be compared both to each other and to the solution 

model which was evaluated only by FEA. 

 The coupled analysis schemes were applied to a variety of geometries and loading 

conditions. These model variations will be presented  in subsequent chapters.  

 



www.manaraa.com

 39 

CHAPTER 5 

ANALYSIS OF A TWO-SIDED TRANSVERSE INTERFACE MODEL 

5.1 Model Description 

 The two-sided transverse interface model is a 

2000x500nm rectangle, with a 500x500nm patch in the middle. 

Due to the stick-like nature of the model, the two-sided 

transverse interface model will henceforth be referred to as the 

‘stick’ model. The thickness of the stick model, as well as the 

thickness for all the models studied in this research, was set to 

0.01 nm.  Dimensions of the stick are shown in Figure 5.1. Rigid 

body motion was prevented by applying point constraints to the 

model. In Figure 5.1 the red dots indicate points with fixed x 

displacements and blue dots indicate fixed y displacements. The 

green dot in the middle of the patch region is constrained in both 

the x and y direction. The constraints were located along the axes 

of symmetry for loading cases (a) and (b) and close enough to 

the axis of symmetry in loading case (c) such that their effect on the outcome was 

minimal. The external loading was applied along the top and bottom edge of the outer 

region (purple lines). Figure 5.2 shows the modeling tree for the stick geometry. 

 

Figure 5.1: The 

stick geometry. 
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Figure 5.2: Modeling Tree for the stick geometry; (a), (b) and (c) refer to the loading 

cases shown in Figure 4.5 (10 total models). 

5.2 Objective 

 The objective of the stick model was to explore the possibility of coupled analysis 

schemes and determine the necessary steps for convergence.  In all cases the FEA-FEA 

scheme was tested first, to verify interface conditions, followed by the ENM-FEA. The 

initial analysis was of the stick subjected to the uniform loading condition with isotropic 

material properties. After the model was shown to converge non-uniform loads were 

applied to the stick to see if the analysis schemes could handle crack like conditions. This 

procedure was then repeated for the anisotropic case.    

5.3 FEA-FEA: Uniform Load with Isotropic Properties 

 The force and displacement results along the horizontal boundaries of the stick 

model under a uniform load with isotropic material properties are shown in Figure 5.3. 

The iterations in Figure 5.3, and for all the Figures in this section, are denoted by the 

blue, red, green, yellow, and cyan lines, for the first through fifth iteration, respectively. 

The black line indicates the solution. The force and displacement outputs of the analysis  
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were accurate with respect to the expected solution to within 0.37%, on average. The 

change in value between the last and second to last iteration was, on average, less than 

0.36%. Both of these values are well within the limits of convergence and accuracy 

defined in §4.1. The percentage error in displacement of each individual node with 

respect to its corresponding solution node can be seen in Figure 5.4. From the initial 

investigation it was determined that both a 

cutoff and relaxation algorithm were necessary 

for convergence. The cutoff algorithm was 

needed for the FEA to evaluate the patch and 

outer region during the first iteration. The 

relaxation algorithm expedited the convergence 

by dampening the oscillations of the iterative 

systems. A detailed description of both these 

algorithms is presented in the  

following sections.   

 
Figure 5.3: Simulation results for six iterations of a FEA-FEA coupled analysis with 

both relaxation and cut-off algorithms applied.  

 

Figure 5.4: The percent error of the 

displacement in the final iteration. 
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5.3.1 The Cutoff Algorithm   

  The first analysis of the stick model was unsuccessful and no results were 

obtained. The root of the failure was traced to the force outputs from the initial analysis 

of the outer region. Recall the patch interface boundaries of this model were fully 

constrained in all directions. The artificially imposed constraints caused sever stress 

concentrations in the immediate vicinity of the corners that resulted in force anomalies 

well over 150% of the expected solution at the boundary extremities. Clipping these 

forces was necessary for the internal solver of the FEA to converge. The cutoff algorithm 

allowed the FEA to evaluate the patch region, and thus the overall coupled scheme could 

iterate.  

 The cutoff algorithm compared the 

solution force of each node along the patch 

boundary from a full FEA model of the stick 

(modeled with the same material properties and 

under the same loading conditions as the coupled 

analysis) to the corresponding node in the 

coupled analysis. If the force output of the node 

from the coupled analysis fell outside a specified 

range of the corresponding solution node the outlying force was clipped to the value it 

exceeded. If the force output from the coupled analysis fell within the specified range it 

retained its original value and was not changed. All solutions were checked to determine 

that the cutoff algorithm was not active on any node at convergence. This check implies a 

third convergence criterion. A visual rendition of the cutoff algorithm can be seen in 

 

Figure 5.5: Visual representation 

of the cutoff algorithm. 
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Figure 5.5. The cutoff range for the simulations presented in this paper was set to +/- 50% 

of the solution value. Validation of the cutoff algorithm can be found in Appendix A1-

A2. 

 The horizontal lines visible at the 

boundary extremities in the first iteration 

(blue line), shown in Figure 5.6, are a 

result of the cutoff algorithm. The 

continuity of the final iterations (cyan 

line) shown in Figure 5.6 indicate they 

were unaffected by the cutoff algorithm. 

Analytical comparisons confirmed the 

final force and displacement results were 

within 50% of the solution and therefore unaffected by the cutoff algorithm.   

 

Figure 5.6: Effect of the cutoff algorithm 

on data near corners. 
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5.3.2 The Relaxation Algorithm 

 Without the relaxation algorithm the outputs of the coupled schemes oscillated 

about the expected solution as shown in Figure 5.7. The relaxation algorithm hastened the 

convergence of the system by dampening the oscillations. The relaxation algorithm 

compared the force outputs at each node from two consecutive iterations and determined 

a new force as a fixed percentage of the difference between the two force outputs. The 

relaxation algorithm is represented in pseudo-code with this set of equations:  

( )F F F Ff o c o= − −α  (4) 

 

where Fc is the force from the current iteration, Fo is the force from the previous 

iteration, α is the percentage the force is allowed to change, and Ff is the final force used 

in the subsequent iteration.  

 

Figure 5.7: Effect of the cutoff algorithm during iterations: solution doesn’t 

converge. 
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 Validation of the Relaxation algorithm can be found in Appendix A3-A5. The 

relaxation algorithm was not applied during the first exchange of data as there was no 

previous data to compare too. For the simulations presented in this thesis the change in 

force between iteration was dampened to 50% (α = 0.5). The value of 50% was selected 

because it allowed the models to converge to the tolerance specified in §4.1 within five 

iterations. 

5.4 ENM-FEA: Uniform Load with Isotropic Properties 

 

 The success of the FEA-FEA 

scheme suggested the ENM-FEA scheme, 

with the same load and material settings 

would also prove viable. The ENM-FEA 

scheme was attempted and the 

convergence results as well as the percent 

error of the final iteration to the solution 

are presented in Figure 5.8 and Figure 5.9, 

respectively.  

 
Figure 5.8: Percent error in force the 

final iteration for ENM-FEA simulation 
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 The average accuracy of the final displacement values, with respect to the single-

region FEA solution, was within 0.31%. The difference in output values between the last 

and second-to-last iteration was also within 0.41%.  These convergence values were 

within the predefined limits of acceptability.  

5.4.1 Both Schemes: Non-Uniform Load with Isotropic Material Properties 

 The non-uniform but symmetric loading case (b) was then applied to the isotropic 

stick model and analyzed by both analysis schemes. The convergence and percent error 

graphs for each method are presented in Figure 5.10 and 5.11, respectively. In both cases 

the convergence of the last two iterations was within 0.47 % of each other and the overall 

accuracy of both models was within 0.39% of the expected solution value (~0.35% for 

FEA-FEA and ~0.39% for ENM-FEA).  

 

Figure 5.9: Simulation results for six iterations of a ENM-FEA coupled analysis.  
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Figure 5.10: Convergence of FEA-FEA (top) and ENM-FEA (bottom) under loading 

case (b). 
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The model was than subjected to a non-uniform non-symmetric load, case (c). The point 

constraints did cause mild perturbations in the stress field, as shown in Figure 5.12. 

However, these perturbations were sufficiently removed from the patch boundary to have  

 

 
Figure 5.11: Percent Error of FEA-FEA (top) and ENM-FEA (bottom) under 

loading case (b). 
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negligible effects on the forces at the patch 

boundaries. The convergence and 

accuracy of both schemes is shown in 

Figure 5.13 and 5.14, respectively. The 

average percent error with respect to the 

solution was ~1.8% and ~6.0% for the 

FEA-FEA and ENM-FEA simulation, respectively. The convergence fell within the 

acceptable limits, however the accuracy did not. In both cases the largest percent error 

occurred at the boundary extremities. The large percent error in the ENM-FEA model 

was caused by an interruption in the iterative process. The simulation was reattempted 

multiple times with no success. The cause of the problem was an internal error in the 

FEA software.  

 

Figure 5.12: The 

effects of displace-

ment constraints 

on the stress field 

in the upper 

portion of the stick 

model under 

loading case (c). 
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Figure 5.13: Convergence of FEA-FEA (top) and ENM-FEA (bottom) under loading 

case (c). 
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5.4.2 Both Schemes: All loading Conditions – Anisotropic Properties 

 The stick model with anisotropic material properties was only subjected to 

loading cases (a) and (b). The results of case (a) for both FEA-FEA and ENM-FEA 

schemes are shown in Figure 5.15. In both instances the final iterations of the simulations 

converged to the within 0.27% of each other and the overall accuracy of the final iteration 

with respect to the solution was within 0.26%. Similar to the isotropic case, the 

 

 
 

Figure 5.14: Percent Error of FEA-FEA (top) and ENM-FEA (bottom) under 

loading case (c). 
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anisotropic ENM-FEA scheme did show a larger percent error in both force and 

displacement outputs at the boundary extremities.  

   
Figure 5.15: Convergence and Percent Error of FEA-FEA (left) and ENM-FEA 

(right) with anisotropic material properties under loading case (a). 
 The results of the convergence and accuracy of the FEA-FEA and ENM-FEA 

schemes under loading case (b) are presented in Figure 5.16. For both models the overall 

accuracy was within 0.52 % which was well within the acceptable limits. The non-

uniform non-symmetric loading, case (c), was not applied to the anisotropic case as the 

accuracy of the isotropic models were not good and it was dubious that the results of the 

anisotropic model would be much better given the similar responses of the isotropic and 

anisotropic models under both loading cases (a) and (b). 

 



www.manaraa.com

 53 

 
Figure 5.16: Convergence and Percent Error of FEA-FEA (left) and ENM-FEA 

(right) with anisotropic material properties under loading case (b). 

5.5 Conclusions 

 The convergence and accuracy of the previous simulations indicate a strong 

likelihood that FEA-FEA and ENM-FEA schemes will be able to accurately model 

cracked geometries, with any material properties, as long as the data exchanged at the 

interface boundaries is symmetric. The accuracy of the non-uniform non-symmetric 

loading case was poor and the percent error was above the acceptable value. However, 

the convergence was well within in the acceptable limits. Convergence to an inaccurate 

value implies the iterative scheme works but there are errors in the data that is being input 

and output during the iterations. These errors are likely caused by the singularity in the 

geometry at the patch corners and the initial constraints.   

 The primary difference in accuracy between the ENM-FEA and FEA-FEA 

simulations occurred near the corners. This was expected for the same reasons described 

in §4.2 explaining the subtle discrepancy between the displacement outputs of the FEA 

and ENM analysis. In all cases the FEA-FEA results were more accurate than the FEA-

ENM results because of the slight variation in material property characteristics explained 
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in §4.2. The ENM patch was shown to displace on average approximately 0.20% more 

than the FEA patch, under the same load. This inherent displacement discrepancy in 

addition to the corner affects, contribute to the decreased accuracy of the FEA-ENM 

simulations.  
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CHAPTER 6 

ANALYSIS OF A FOUR-SIDED INTERFACE MODEL 

6.1 Model Description 

 

 The four-sided interface model geometry was a 

2000x1500nm rectangle with a 500x500nm patch in the 

center. As a result of the model’s likeness to a block it 

will hereafter be referred to as the ‘block’ model. The 

overall dimensions, point constraints, and location of the 

external load application can be seen in Figure 6.1. Blue 

dots represent the location of points with zero y-

displacement constraints, red dots indicate zero x 

displacement and displacement in all directions was 

fully confined at the green dot. The displacement constraints were all located on the axes 

of symmetry for both loading cases (a) and (b) and far enough from the patch boundaries 

to have any significant effect on the force outputs in loading case (c).  The external loads 

were applied along the top and bottom boundary of the outer patch where the purple lines 

are in the Figure 6.1.  

6.2 Objective 

 The objective of the block geometry was to determine if the coupled analysis 

schemes could handle biaxial loading conditions. The convergence and accuracy of the 

models under the different loading conditions and with different material properties were 

recorded and studied to determine any shortcomings in the analysis schemes. A 

 
Figure 6.1: The block 

geometry.  
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comprehensive list of simulations involving the block geometry can be seen in Figure 

6.2.  

 
Figure 6.2: Modeling tree for the block geometry; (a), (b) and (c) refer to the 

loading cases shown in Figure 4.5  (10 total models).  

 The Figures presented in the following sections will show the convergence of the 

displacement along the horizontal and vertical boundaries of the patch. The solution 

values will be shown in black and the iterations will be denoted by the colors indicated by 

the legend in Figure 6.3. Since the loading is 

symmetric (in most cases) both the horizontal (top 

and bottom) and vertical (left and right) boundaries 

are shown on the same graph with the bottom and 

left values made negative. The ‘T’, ‘B’, ‘L’, and ‘R’ 

in Figure 6.3 refer to the top, bottom, left, and right 

boundaries, respectively. The absolute value of the 

percent error of each node in the last iteration with 

respect to the corresponding solution node will also 

be plotted.  

 
Figure 6.3: Legend for the 

subsequent convergence graphs.  
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6.3 Both Schemes: Uniaxial Loading with Isotropic Properties 

 The accuracy and convergence of the block model under loading case (a) were 

within 0.56% and 0.90%, respectively, for the FEA-FEA scheme and 1.90% and 0.80% 

for the ENM-FEA scheme. The convergence and accuracy results are shown in Figure 

6.4 and 6.5 for the FEA-FEA and ENM-FEA schemes, respectively. The force outputs 

along the vertical boundaries were not shown, as they are extremely small and 

approximately zero (as expected). However, the results of the block model presented 

above required in addition (with respect to the cutoff and relaxation algorithm) data 

conditioning, which will be explained in the following paragraph.     

 

  

 

Figure 6.4: Convergence and Percent Error of FEA-FEA under loading case (a).  
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 Preliminary analysis of the block geometry using the FEA-FEA scheme was  

inaccurate and the force outputs along the top and bottom boundary interfaces were non-

symmetric about the x-axis. Closer 

examination of the top and bottom 

outputs showed the 

 same drastic change in force at the 

bottom extremities as in the stick model. 

Unlike the stick model, these force 

anomalies persisted throughout the 

iterations but only in the bottom 

 
Figure 6.5: Convergence and Percent Error of ENM-FEA under loading case (a). 

 
Figure 6.6: Force outputs from the 

bottom boundary of the patch every 

.05nm (blue) and 50nm (red). 
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boundary output. The bottom boundary output at the end of a simulation is shown in 

Figure 6.6 to highlight the stark change in force and its proximity to the singularities at 

the boundary corner. The cutoff algorithm prevented the corner forces from exceeding 

more than 50% of the solution value; however as the force along the remainder to the 

boundary converged the extremity forces remained at the cutoff limit.  

 To limit the effect of the corners on the overall accuracy of the model the force 

values at the boundary extremities were extrapolated from the force data collected 

between +/-2.0nm on the respective boundary. Implementing the extrapolation technique 

increased the accuracy of the models and resolved the lack of symmetry between the top 

and bottom force outputs. This methodology was applied to the simulations presented at 

the beginning of this section and for all subsequent block simulations. The correction was 

necessary to eliminate the near infinite force outputs predicted by FEA as the boundary 

approached a singularity at the corner and also to combat the less stiff corner nodes in the 

ENM described in §4.2.    

6.4 Both Schemes: Non-Uniform Loading with Isotropic Properties 

 The results of both the FEA-FEA and ENM-FEA simulation of the block model 

under loading case (b) were acceptable. The accuracy and convergence were within 

1.72% and 0.85%, respectively, for the FEA-FEA scheme and 1.62% and 0.76% for the 

ENM-FEA scheme. The convergence and accuracy results are shown in Figure 6.7 and 

6.8 for the FEA-FEA and ENM-FEA schemes, respectively. As in previous simulation 

the majority of the error in the initial iterations occurred near the boundary corners.   
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Figure 6.7: Convergence and Percent Error of FEA-FEA under loading case (b). 

 

 
Figure 6.8: Convergence and Percent Error of ENM-FEA under loading case (b). 
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  The accuracy and convergence of the block under loading case (c) were within 

1.10% and 0.90%, respectively, for the FEA-FEA scheme and 1.50% and 2.0% for the 

ENM-FEA scheme. Therefore, both models were deemed acceptable under the 

previously defined criteria. The convergence and accuracy results are shown in Figure 6.9 

and 6.10 for the FEA-FEA and ENM-FEA schemes, respectively.  

 Both schemes under loading case (b) and (c) converged well and with acceptable 

accuracy. The convergence of the force and displacements along the vertical interface 

boundaries was poor for both schemes under the non-uniform loading cases.  

 
Figure 6.9: Convergence and Percent Error of FEA-FEA under loading case (c). 
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Figure 6.10: Convergence and Percent Error of ENM-FEA under loading case (c). 
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 The results of both the FEA-FEA and ENM-FEA simulation of the block model 

under loading case (c) were also acceptable. The accuracy and convergence were within 

0.55% and 0.80%, respectively, for the FEA-FEA scheme and 1.90% and 1.29% for the 

ENM-FEA scheme. The convergence and accuracy results are shown in Figure 6.13 for 

the FEA-FEA and ENM-FEA schemes.  

 The accuracy of the forces and displacement values exchanged across the vertical 

patch boundaries was poor. However, the convergence was acceptable. This phenomenon 

was also observed in the isotropic block simulation and is addressed in the Conclusions 

section of this chapter.  
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Figure 6.11: Convergence and Percent Error of FEA-FEA (top) and ENM-FEA 

(bottom) with anisotropic material properties under loading case (a). 
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Figure 6.12: Convergence and Percent Error of FEA-FEA (top) and ENM-FEA 

(bottom) with anisotropic material properties under loading case (b). 
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Figure 6.13: Convergence and Percent Error of FEA-FEA (top) and ENM-FEA 

(bottom) with anisotropic material properties under loading case (c). 
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6.6 Conclusions 

 The accuracy and convergence of the coupled analysis schemes was within the 

range of acceptability, as defined in §4.1 for all the loading case. Extrapolating the 

boundary data near the corners has proven to effectively mitigate the corner effects that 

hindered preliminary models. The increased material surrounding the corner also played a 

role in constraining the displacement of the corner node.  

 The response of the block models under loading case (c) was more accurate than 

the response of the stick model under the same loading. This is most likely a result of the 

aforementioned additional data conditioning and constraints present in the block model, 

as the majority of the error in the stick model occurred at the boundary extremities. 

Applying a similar data extrapolation algorithm to the stick model could have increased 

the accuracy of the simulations.  

 The similarity in results between both isotropic and anisotropic simulations 

further confirms the assertion that the coupled modeling schemes are independent of 

material properties.  

 The convergence of the displacement values along the vertical interface 

boundaries is acceptable for all loading cases; however its accuracy is poor. This is likely 

a consequence of the horizontal forces being derived from the contraction of the model 

rather than from an applied external force. The majority of the displacement along the 

vertical boundaries results from the perpendicularly applied force along the top boundary 

(which is increasingly less accurate as it approaches the corner). The force anomalies 

coupled with the decreased horizontal stiffness of the boundaries surely contribute to the 

inaccuracies as well. Overall the magnitude of the difference in horizontal displacement 
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in the patch is small compared to the vertical displacements along the top and bottom 

boundaries.         
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CHAPTER 7  

ANALYSIS OF MODELS CONTAINING CRACKS 

 Four different alterations were made to the two and four-sided transverse interface 

models discussed in the previous sections in order to mimic crack conditions. In all cases 

the external loading along the outer portion of the model was uniform, case (a), and the 

rigid body constraints were kept intact whenever possible. The models with cracks were 

analyzed by both FEA-FEA and ENM-FEA schemes. Due to the similarity in results 

between the isotropic and anisotropic cases established in prior simulations it was 

deemed unnecessary to run simulations with both sets of material properties – success 

with one set of material properties would indicate a high likelihood of success with any 

material properties. The isotropic material properties were selected for use in the 

simulations as a matter of convenience.  

7.1 External (relative to patch) Cracks 

 External cracks refer to cracks located outside the patch. Two external crack 

scenarios were modeled. In the first case there was only one external crack, and in the 

second case there were two. A zero force input was applied to the nodes in the ENM 

representing the crack tip. The complete listing of the external crack scenarios modeled 

can be seen in Figure 7.1. Further information, results, and conclusions for the models 

will be presented in the following sections.  
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Figure 7.1:  Modeling tree of models with cracks in geometry (4 total models).  

7.1.1 One Sided External Crack – Geometry and Objective 

 The first scenario involved removing a section 

of material from the outer potion on one side of the 

block geometry, as shown in Figure 7.2. The height of 

the crack was a constant 100nm so the corners at its tip 

would conveniently align with nodes along the patch 

boundary. The alteration to the geometry would result 

in a non-uniform non-symmetric loading condition, 

similar to that induced by loading case (c). Therefore, 

the model was expected to have similar accuracy and 

convergence characteristics as the isotropic block model under loading case (c).   

7.1.1.1 Results and Conclusions 

 The results of the one-sided crack simulation for both the FEA-FEA and ENM- 

FEA schemes are presented in Figure 7.3. The convergence of both the FEA-FEA and 

ENM-FEA schemes was acceptable at 0.63% and 0.26%, respectively. The accuracy of 

   

Figure 7.2: Block geometry 

with one external crack. 
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the models was approximately 9.0% and 9.25% for the FEA-FEA and ENM-FEA 

schemes. These values were not acceptable. The majority of the error along the top and  
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Figure 7.3: Convergence and Percent Error for FEA-FEA (top) and ENM-FEA 

(bottom) under loading case (a) with one external crack in geometry.  
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bottom boundaries occurred near the boundary extremities, especially near the crack side 

corner where the error in displacement reached its maximum at approximately 20% and 

16% for the FEA-FEA and ENM-FEA schemes, respectively.   

 The horizontal displacement along the vertical boundaries followed the same 

trends predicted by the solution value however the accuracy averaged a 18% error on the 

non-cracked side and nearly 80% error on the cracked the side.  This was not surprising 

considering the high error along the vertical boundaries previous observed in the block 

model simulations in combination with the addition of the two singularities present at the 

crack tip. The horizontal displacement solution value, derived from the single-region 

FEA model, is also suspect as the forces and subsequently the displacements of the singe-

region FEA model would increase to infinity as they approached the singularities at the 

corner. Therefore, the ‘solution’ value itself might not be accurate rendering the percent 

error near the crack tip irrelevant.  

7.1.2 Two Sided External Crack – Geometry and Objective 

 

 This next case was very similar to the previous 

case, but with material removed from the outer region 

at either side of the patch, as shown in Figure 7.4, to 

mimic two cracks. The crack height was the same as in 

the previous model. It was hoped that by locating two 

cracks symmetrically about the patch the resulting 

stress along the boundary would be symmetrical and 

similar to loading case (b) applied to the un-cracked 

   

Figure 7.4: Block geometry 

with two external cracks. 
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models.   
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7.1.2.1 Results and Conclusions 

 The results for the two sided crack simulation are shown in Figure 7.5 for both the 

FEA-FEA and ENM-FEA analysis schemes. The accuracy and convergence of the FEA-

FEA model was with 7.4% and 0.20%, respectively. The convergence of the FEA-ENM 

model was 0.23% and its accuracy was 9.0%. Both models are considered to be 

inaccurate based on the criteria defined in §4.1. The overall concavity of the simulation 

results is opposite to that of the solution and the average error is only small because the 

solution curves overlap. The standard deviation is two orders of magnitude larger that 

that of the un-cracked block geometry under loading case (c).  Although inaccurate with 

respect to the solution, the results of the two-coupled schemes are in relative close 

agreement with each other. Since both schemes had been proven to accurately converge 

under simple loading case it can be concluded that the error is a result of the input and 

output data rather than the schemes.     

 The convergence graphs of the force outputs further highlight the effect of the 

corners on the boundary outputs. Similar to the one sided crack simulation the force 

output along the top and bottom boundaries go awry at the corners failing to capture the 

true force trend. The accuracy of the horizontal displacements along the vertical 

boundaries was better than observed in most of the other simulations. This can be 

attributed to the increased forces that were present given the geometry and loading of the 

model in this scenario. Form these results it can be surmised that increasing the 

horizontal force in the model will increase the accuracy of its horizontal displacements.  
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Figure 7.5: Convergence and Percent Error for FEA-FEA (top) and ENM-FEA 

(bottom) under loading case (a) with two external cracks in geometry. 
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7.2 Internal (relative to patch) Cracks 

 Internal cracks were represented by geometric vacancies in the model within the 

patch. In the case of the ENM the horizontal and vertical springs attaching the nodes in 

the area representing the crack were eliminated by setting their value to zero. The 

diagonal spring constants were set to 0.001, which is essentially zero however a 

numerical value was necessary for the solving the ENM.  

7.2.1 Stick: Geometries and Objective 

 

 The objective of the internal crack models was to 

explore how the models would converge under a 

uniform external load with a small symmetric flaw in 

the patch geometry. The size of the crack was varied to 

determine if there was any relation between crack size 

and either the convergence or accuracy of the model. 

Success of these models would indicate that modeling 

parts with small cracks or flaws at the nano-level with a coupled ENM-FEA analysis 

scheme was possible. 

 Both of the internal cracks modeled were centered along the horizontal line of 

symmetry in the patch region. The first crack was 25x100nm and analyzed with both the 

FEA-FEA and ENM-FEA schemes; the second was 10x70nm and modeled only with the 

FEA-FEA scheme. The later was modeled with only the FEA-FEA scheme to study the 

effect of crack size on the solution accuracy and convergence. Additional point 

constraints (in the x-direction) were added to the FEA patch model and are shown in 

Figure7.6 as the white dots. Although the crack size is below the resolution of the FEA, 

 

Figure 7.6: Patch with an 

internal crack. 
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the error incurred by its existence will have subsided before reaching the patch 

boundaries and should have minimal effect on the output data.   

 The smaller crack could have been modeled with the FEA-ENM scheme but 

would require additional refinement of the elastic network in the vicinity of the crack. 

The location of the crack also eliminated the only x displacement constraint in the patch 

model, resulting in a model that could succumb to rigid body.  However, since there were 

no external loads in the x direction applied to the patch in the stick model and the loading 

along the top and bottom boundaries is symmetric (and remains approximately symmetric 

throughout the simulation), the patch region is stable and the lack of constraint in the x 

direction is negligible.  

7.2.1.1 Results and Conclusions 

 

The convergence and 

percent error graphs for the FEA-

FEA simulation of the model 

containing a 10x70nm crack are 

presented in Figure7.7. The 

accuracy and convergence of the 

model was acceptable, and 

slightly better than for the FEA-

FEA model with the larger crack, 

at 0.62% and 0.80% respectively.  

 The displacement results 
 

Figure 7.7: Convergence and Percent error of 

FEA-FEA for stick model with internal crack 

(10x70nm).  
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for the geometry containing the larger, 25x100nm, crack size along the top and bottom 

boundaries of both the FEA-FEA and ENM-FEA schemes demonstrated accurate 

convergence to the solution values. The accuracy of the FEA-FEA and ENM-FEA 

schemes was acceptable at 1.30% and 1.42%, respectively. The convergence of both the 

FEA-FEA and ENM-FEA schemes was also acceptable at 0.90% and 0.84%, 

respectively.  

 The simulation results for all the internal crack scenarios in the stick geometry 

were accurate and very similar to the results of the initial stick model with no internal 

cracks present under loading case (a). This observation is expected due to the minimal 

effect of the internal crack on the force at the boundary resulting in a nearly uniform 

loading distribution at equilibrium.  

 The slightly better accuracy of the model with the smaller crack size indicates that 

the convergence of the model could be dependent on the magnitude of the force along the 

boundary, although the difference in accuracy falls within the range of error. Further 

studies will need to be conducted to confirm this.   

7.2.2 Block: Geometries and Objectives 

 The block model with an internal crack was only analyzed using the FEA-FEA 

scheme. An analysis with the ENM-FEA scheme was attempted however, with externally 

applied forces in the x direction and no x constraint in the patch the model was unstable 

and large rigid body motion occurred during the simulation.  

 The outer region of the model was the same as described in Section 6.1. The patch 

region was exposed to the same two internal crack sizes and constrained in the same 

manner as the patch for the stick model discussed in the previous section.  
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 The objective of this model was to see if the analysis schemes could handle 

simulations involving the biaxial loading of a patch region containing a crack. Also, the 

size of the internal cracks was much smaller than the external cracks and consequently 

caused smaller perturbations in the forces along the boundary.  

7.2.2.1 Results and Conclusions 

 The results for both crack geometries demonstrate accurate convergence and are 

shown in Figure 7.8. The smaller internal crack size resulted in a slightly more accurate 

solution (0.62% compared 1.30%) than that of the larger crack, however both values fell 

within the same margin of error. The convergence of the simulations was also acceptable 

for both cases at 0.80% and 0.90% for the smaller and larger crack sizes, respectively. In 

both cases the highest error in the solution came at the corners, but the error was 

extremely small compared to that of the models with external cracks. Neither case 

converged as nicely as the simulation of the block geometry without cracks. As observed 

in all block simulations the horizontal displacement data along the vertical patch 

boundary was extremely inaccurate.  



www.manaraa.com

 81 

 

 
Figure 7.8: Convergence and Percent Error of FEA-FEA of block geometry with 

internal crack 25x100nm (top) and 10x70nm (bottom) under loading case (a).  
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CHAPTER 8 

CONCLUSIONS AND FUTURE WORK 

8.1 Conclusions 

 

 The accuracy and convergence of each scenario modeled can be founding Table 

8.1. The focus of the research present in this paper was to determine the feasibility and 

robustness of a coupled ENM-FEA scheme. The coupled analysis was tested against 32 

different scenarios and the results of each simulation were presented in this report. This 

chapter will highlight the trends that appeared in the majority of the simulations as well 

Table 8.1: A summary of the accuracy and convergence of each model. 
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as point out the major shortcomings in the analysis scheme.  

8.1.1 Positive Overlying Trends in Simulation Results 

 

 The simulation results prove the force and displacement values at the patch 

boundaries can converge accurately to the solution value, which is particularly obvious in 

the simplest geometries and loading cases. The coupled analysis of the two and four-

sided transverse models with an internal crack demonstrated the ability of the schemes to 

evaluate parts with cracks.   

8.1.2 Negative Overlying Trends in the Simulation Results 

 

 The most prevalent deficiency in the simulation results was the inability to 

accurately capture the force outputs trends near the interfacial boundary extremities. This 

shortcoming was not completely unexpected. The interface boundaries meet at right 

angles creating sharp corners. The singularity caused at the corner vertex is the same as 

would be at the tip of a crack. FEA’s inability to model the stress fields in the immediate 

vicinity of a crack is well documented and this limitation is reflexively related to the 

analysis of sharp corners. It was hoped that the coupled analysis scheme would 

sufficiently mitigate the stress concentrations caused by the corners through successive 

iterations. The coupled analysis scheme did reduce the stress concentration effect of the 

corners, as demonstrated by the convergence diagrams, but not enough to account for 

subtle changes in forces near the corners that resulted from complex loadings that could 

be present in future simulations.  

 Rounding the interface corners with a 50nm radius curve failed to reduce the 

effects corner effects. This was partially due to the imprecision of the interpolation file 
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used to apply the displacement values to the curved surface. A much smaller curve not 

participating in the data exchange may have been more effectively at reducing the effect 

of the corners and could be tried in future simulations.  

 The force and displacement convergence and accuracy along the vertical interface 

boundaries was also poor throughout all the different scenarios. This could be attributed 

to a number of different conditions and is most likely a combination of all of them. There 

were no external loads applied to the vertical boundaries in the outer region. 

Consequently all the horizontal force and displacement values were a result of the 

contraction caused by the externally applied vertical force. The convergence of the top 

and bottom boundaries in the vertical direction, parallel to the applied force, was 

generally good. It seems reasonable to suspect that a force applied perpendicular to the 

vertical boundaries would increase its convergence and accuracy. The extremities of the 

vertical boundaries are also susceptible to the corner effects mentioned in the previous 

paragraph.  

 In many of the symmetrical model under loading cases (a) and (b) the force and 

displacements results are not symmetrical, most noticeable in early iterations. This 

observation does tend to diminish with continued iteration, but the effects are still present 

in the final iteration as shown by the asymmetric Percent Error graphs. These 

asymmetries could be caused by poor or inadequate rigid body constraints or from the 

force anomalies that occur at the corners.  

8.1.3 Observations During Testing 

 

 The coupled analysis schemes were often interrupted by execution errors. The 

errors always occurred during the FEA analysis of a component. The component could 
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often be successfully reanalyzed with FEA immediately after the error without making 

any changes to the input. It should be noted that the coupled analysis schemes did not 

converge as accurately when continued after the error message (even when no changes 

were made to the input data). Comparing the results of an interrupted and uninterrupted 

simulation of the anisotropic stick model shows this phenomenon. The simulation results 

are presented in Appendix A6-A7. The uninterrupted model converged significantly more 

accurately.   

 The effect of the constraints and loading were determined to be important. The 

ENM is very difficult to constrain in its current condition. Furthermore, excessive caution 

must be used when constraining asymmetric geometries and/or models with asymmetric 

loads in order to prevent rigid body motion without imposing perturbations to the stress 

field that would adversely influence the analysis of the model. This observation came 

about when massive rigid body motion was observed during an ENM-FEA of the four-

sided transverse model with an internal crack in the ENM.  

8.2 Future Work  

 

 The advised future work is directed at addressing the deficiencies in the current 

modeling techniques, and aimed at increasing the versatility of the coupled analysis 

scheme.  

8.2.1 FEA  

 

 The stress concentrations resulting at the patch boundaries need to be mitigated. 

This could be accomplished through increased data conditioning or changing the model 

geometry to eliminate sharp corners. Inputting and outputting displacement data from a 
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curved boundary could prove difficult and the current technique of implementing 

interpolation files to input displacement values along boundaries in FEA proved 

inadequate (on curved surfaces) in preliminary testing.   

8.2.2 ENM  

 

 The ability to easily apply arbitrary constraints to the ENM is necessary and 

would facilitate the modeling of different geometries and loading conditions. Further 

research into the how the values of the vertical, horizontal, and diagonal spring constants 

effect the overall stiffness of the ENM are warranted and necessary for controlling the 

models’ behavior. Particular attention needs to be allocated to controlling the 

displacement of the boundary nodes in the ENM in order to prevent inaccurate 

displacement outputs, or stress concentration within the patch, resulting from the 

difference in stiffness between them and other nodes in the system.   

8.2.3 Analysis Scheme Related 

 

 Further exploration on the inaccurate convergence along the vertical interface 

boundaries is necessary. The effects of subjecting the model to biaxial external loading 

could be pertinent to investigating this issue.  

 A switch to eliminate the cutoff and relaxation algorithm as the convergence of 

the solution approaches equilibrium would be novel. As would an algorithm that could 

stop the iterations once the outputs had sufficiently converged (rather than just set the 

number of iterations manually).  
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APPENDIX A  

THE CUTOFF ALGORITHM: MATLAB CODE 

 
 
function [out] = cutoff(in, sol, beta) 
% ‘in’ is the matrix that needs conditioning 
% ‘sol’ is the solution input matrix 
% ‘beta’ is the cutoff percentage 
% ‘out’ is the output matrix 
 
% this determines the size of the input matrix 
sz1 = size(in, 1); 
sz2 = size(in, 2); 
 
if sz2>sz1 
    sz = sz2; 
else 
    sz = sz1; 
end 
 
% this section applies the cutoff algorithm   
for i=1:sz 
    if sign(sol(i))>0 
        pmax=(1+beta)*sol(i); 
        pmin=(1-beta)*sol(i); 
        if in(i)> pmax 
            out(i) = pmax; 
        elseif in(i)<pmin 
            out(i) = pmin; 
        else 
            out(i) = in(i); 
        end 
    elseif sign(sol(i))<0 
        nmax = (1-beta)*sol(i); 
        nmin = (1+beta)*sol(i); 
        if in(i)>nmax 
            out(i) = nmax; 
        elseif in(i)<nmin 
            out(i) = nmin; 
        else 
            out(i) = in(i); 
        end 
    else 
        out(i) = 0; 
    end 
end 
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APPENDIX A  

THE CUTOFF ALGORITHM: VALIDATION 

 

The original matrix entered was random (represented by the dotted line). It’s average was 

determined and entered as the ‘solution’ in the cutoff algorithm. The cutoff algorithm 

compares the discrete values of the input matrix to the corresponding discrete values of 

the solution matrix. If the values fell outside the region determined by the cutoff factor 

(0<=beta<=1) the maximum value (beta*sol(i)) is applied in place of the original value.  

Results are shown for the following 4 cases listed below:  

1. A positive 1xn matrix 

2. A negative 1xn matrix  

3. A positive nx1 matrix 

4. A negative nx1 matrix 

 

 

Figure A.1: Validation of the cutoff algorithm. 
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APPENDIX B 

RELAXATION ALGORITHM: MATLAB CODE 

 
function [out] = relaxation(old, new, alpha) 
% 'old' is the output from the previous iteration 
% 'new' is the output from the most recent iteration 
% 'alpha' is the percent change allowed 
% 'out' is the matrix that will be used in the next iteration 
  
% this determines the size of the input matrix 
stop1 = size(old,1); 
stop2 = size(old,2); 
if stop1>=stop2 
    stop = stop1; 
else 
    stop = stop2; 
end 
  
% this section applies the relaxation algorithm 
for i=1:stop 
    if sign(old(i))>sign(new(i)) || sign(old(i))<sign(new(i)) 
        % if the values have different signs 
        out(i) = old(i) - alpha*(old(i)-new(i)); 
    else 
        % if the values have the same sign 
        out(i) = old(i) + alpha*(new(i)-old(i)); 
    end 
end 
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The relaxation algorithm was validated against the following 8 scenarios: 

1. A positive 1xn matrix taking positive step (2 times itself) 

2.  A negative 1xn matrix taking negative step (2 times itself) 

3.  A positive nx1 matrix taking positive step (2 times itself) 

4.  A negative nx1 matrix taking negative step (2 times itself) 

5.  A positive 1xn matrix taking negative step (-2 times itself) 

6.  A negative 1xn matrix taking positive step (-2 times itself) 

7.  A positive nx1 matrix taking negative step (-2 times itself) 

8.  A negative nx1 matrix taking positive step (-2 times itself) 

*’steps’ indicate iteration step 1 and step 2 are the ‘old’ and ‘new’ matrix in the code 

The results are shown below and on the next page:  

 

 

Figure B.2: Validation of the relaxation algorithm; case 1-4. 
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Figure B.2: Validation of the relaxation algorithm; case 5-8.  
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APPENDIX C 

EFFECTS OF INTERRUPTED ITERATIONS 

 

The results presented below are from the ENM-FEA of the anisotropic two-sided 

transverse interface model under a uniform external loading condition. The first set of 

plots is from the interrupted simulation and the second set is from the uninterrupted 

simulation. The interrupted simulation was continued from the point of interruption (FEA 

of the outer region) without any modification to the input/output data. 

Figure C.3: Results from an interrupted simulation. Note the poor final 

convergence.  
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Figure C.2: Results from an uninterrupted simulation. Note the better convergence 

than the interrupted case.  
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